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Large-scale Direct Targeting for 
Drug Repositioning and Discovery
Chunli Zheng1,*, Zihu Guo1,*, Chao Huang1,*, Ziyin Wu1, Yan Li2, Xuetong Chen1, 
Yingxue Fu1, Jinlong Ru1, Piar Ali Shar1, Yuan Wang3 & Yonghua Wang1

A system-level identification of drug-target direct interactions is vital to drug repositioning and 
discovery. However, the biological means on a large scale remains challenging and expensive even 
nowadays. The available computational models mainly focus on predicting indirect interactions 
or direct interactions on a small scale. To address these problems, in this work, a novel algorithm 
termed weighted ensemble similarity (WES) has been developed to identify drug direct targets 
based on a large-scale of 98,327 drug-target relationships. WES includes: (1) identifying the key 
ligand structural features that are highly-related to the pharmacological properties in a framework 
of ensemble; (2) determining a drug’s affiliation of a target by evaluation of the overall similarity 
(ensemble) rather than a single ligand judgment; and (3) integrating the standardized ensemble 
similarities (Z score) by Bayesian network and multi-variate kernel approach to make predictions. All 
these lead WES to predict drug direct targets with external and experimental test accuracies of 70% 
and 71%, respectively. This shows that the WES method provides a potential in silico model for drug 
repositioning and discovery.

A system-level understanding of the relationships between drugs and their targets, especially direct tar-
gets1, is vital to address the efficacy and safety-related issues of compounds in the later stages of drug 
discovery and development2,3 and, thus, to reduce the high attrition rates in clinical trials4. Various 
biological means are available for identifying drug targets5–7, but the detection on a large scale remains 
challenging and expensive even nowadays. The obstacle towards this goal lies in the time and costs of 
pharmacological experiments that can accurately recapitulate the target response for diverse drugs8.

Recently, many experiment-based approaches including the high-density microarray and cell-based 
assays have been proposed to investigate the indirect or direct features of drug–target interactions8,9. 
However, the most reliable evidence of the direct interactions is the co-crystallization of the target pro-
teins with drugs in a solution10. Recent developments in biotechnology have contributed to the increase 
in the amounts of high-throughput data for drugs and targets in the omics level, which can be precious 
sources for recognizing unknown drug-target interactions11. These also accelerate a variety of in silico 
approaches that have been developed for predicting potential targets. A simple way to measure direct 
the interactions might be the molecular docking simulation12, but which is limited by the availability of 
a reliable three dimensional (3D) structure of target proteins13. Thus, it is still very important to develop 
efficient computational methods to predict drug targets, which are independent of the protein structures.

Our previous work has developed a chemogenomic model based on chemical, genomic, and phar-
macological information for characterizing the complicated interactions between ligands and targets14. 
However, due to the limitation of database used, this model could not discriminate those direct or indi-
rect interactions. Another recently developed similarity ensemble approach (SEA) is capable of detecting 
the direct interactions based on the chemical similarity of ligand sets, which has been demonstrated as 
an effective conceptual and methodological breakthrough in this field15.
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In this work, we propose a novel weighted ensemble similarity (WES) algorithm, an extension of 
the SEA method, to predict the drug-target direct interactions. Here, the term ensemble is an extension 
concept derived from statistical physics. As we know, each protein (receptor) has several ligands, these 
ligands construct a set, and here, the set was treated as an ensemble. This concept is proposed based on 
the following considerations: (1) if the ligand set has structurally similar compounds, then the ensemble 
average will cover a narrow chemical space. Thus, to compare a compound with the ensemble average 
or any single compound in a set might be have similar results; (2) however, in most cases, the ligands 
are diverse for a receptor like P-glycoprotein16 or COX23, they might be divided into several smaller 
sub-clusters. If the prediction of a compound that is still made based on its similarity with a certain 
compound in the training set, it will not give reliable results. Thus, a more reasonable way is to compare 
a compound similarity with the whole feature of an ensemble (set).

Here, the WES model was built on a large data set involving 98,327 drug-target relations, which 
includes BindingDB17 (http://www.bindingdb.org/bind/index.jsp, access time: January 16, 2014), 
Drugbank18 (http://www.drugbank.ca/, access time: January 16, 2014), PDB19 (http://www.rcsb.org/pdb/, 
access time: January 16, 2014) databases, and GoPubMed (http://www.ncbi.nlm.nih.gov/, access time: 
January 30, 2014). The efficiency of the model was also compared with other published models and 
further validated by pharmacological experiments.

Results
WES—an algorithm for predicting direct interactions of drugs and targets. The algorithm 
works in three phases: (1) identifying the key ligand structural and physicochemical features (CDK 
and Dragon) that are highly-related to the pharmacological properties in a framework of ensemble. We 
assembled the feature matrix for the ligand set of each protein based on statistical tests (non-parametric 
Wilcoxon Sum Rank Test for Dragon feature; one-sided Fisher’s exact test for CDK feature). (2) 
Determining a drug’s affiliation of a target by evaluation of the overall similarity of an ensemble rather 
than a single ligand judgment. As the resulting score does not discriminate relevant similarities from 
random but depends on the number of ligands in each set, it is not a perfect assessment of the overall 
similarity of the ligand sets. Then the overall similarities were converted into the size-bias-free normal-
ized values to eliminate the relevant similarities from random. (3) And finally, integrating the standard-
ized ensemble similarities (Z score) by Bayesian network to make predictions.

Model performance. Feature analysis.  To investigate the effects of different structural features of 
the ligands on the model performance, we have used the Chemical Development Kit (CDK), Dragon 
and the CDK-Dragon hybrid features for model construction, respectively (see Methods for details). 
Table 1 illustrates the results in terms of precision and recall rates. Clearly, the hybrid model outperforms 
both the CDK and Dragon ones in recovering the negative links. Notably, the hybrid model for the 
leave-one-out cross-validation (LOOCV) performs well in predicting the binding (sensitivity 85%, SEN) 
and the non-binding (specificity 71%, SPE) patterns, with the accuracy of 78%, the precision (PRE 74%) 
and the area under the receiver operating curves (AUC) of 0.85, respectively. It is noted that all the scores 
(Z score for CDK and Dragon model and likelihood for CDK-Dragon hybrid model), used to make 
prediction, in this work were selected when the models achieve the highest F1 score in cross-validation 
otherwise specified (see Methods for details). The ROC curves (Fig. 1) show that all the three models are 
capable of catching sufficient information related to detect interactions at high true-positive rates against 
low false-positive rates at any threshold. With the increase of the AUC in the complete dataset, the hybrid 
model improves the ability to identify those known drug-target links, demonstrating that more chemical 
and pharmacological information introduced to build models can achieve better predictive activity.

To investigate the influence of weighted features attributed to the WES performance, we tested the 
different inputs: weighted features vs. non-weighted features. Table S1 shows that the weighted hybrid 

Data set Data type ACC SPE SEN PRE AUC

Feature classes

Dragon +  CDK 0.78 0.71 0.85 0.74 0.85

Dragon 0.75 0.63 0.85 0.70 0.83

CDK 0.74 0.66 0.82 0.71 0.80

Target classes

Ion channel 0.75 0.69 0.80 0.72 0.84

Membrane receptors 0.79 0.73 0.85 0.76 0.86

Transcription factor 0.80 0.74 0.85 0.77 0.86

Transporter 0.79 0.69 0.89 0.74 0.87

Enzyme 0.78 0.71 0.86 0.75 0.86

External validation PDB (IC50 <  10) and 
BindingDB (IC50 >  500 μ M) 0.70 0.70 0.71 0.32 0.75

Table 1.  Performance of the WES method.

http://www.bindingdb.org/bind/index.jsp
http://www.drugbank.ca/
http://www.rcsb.org/pdb/
http://www.ncbi.nlm.nih.gov/
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feature-based WES outperforms the non-weighted feature-based model, with the ACC of 78%, PRE 
of 74% and AUC of 0.85, respectively. This reflects that WES algorithm weights and selects features to 
reduce dimensionality of the descriptor set, thus resulting in good performance.

Also we have made a check of the effectiveness of integrating the standardized ensemble similari-
ties (Z score) by Bayesian network. Notably, the integrated WES model also performs better than the 
non-integrated one in predicting the binding (SEN 85%) and the non-binding (SPE 71%) patterns (Table 
S1). These results serve to highlight the fact that integration procedure of WES algorithm exhibits high 
prediction efficiency.

External data validation. To ensure the reliability of the WES model, we further carried out an 
external validation. The dataset for external validation includes both the binding (positive sample) and 
non-binding data (negative sample) as following: 1) the positive samples were extracted from PDB for 
those ligand-protein pairs with the half-maximal inhibitory concentrations (IC50) <  10 μ M. The inter-
actions which overlap with the training set for model construction were manually deleted, and finally 
649 interactions were obtained; 2) the negative samples were achieved from BindingDB with a filter 
criterion of IC50 >  500 μ M. And finally, 3,172 ligand-target non-binding data was obtained as negative 
samples. The hybrid model shows the prediction ACC of 71% (458/649) for the positive samples and 
70% (2,209/3,172) for the negative samples. All these demonstrate the weighted hybrid WES achieves 
excellent performance for different data sources.

Target class prediction. The performance of WES method was further tested on five pharmaceutical 
classes involving enzymes (n =  761), ion channels (n =  78), membrane proteins (n =  275), transporters 
(n =  50) and transcription factors (n =  39), respectively. Figure 1 and Table 1 show the AUC, SEN, SPE, 
PRE and ACC of the models. WES displays the highest prediction ability for the transcription factor 
(ACC =  0.80) and the membrane protein (ACC =  0.79), followed by the enzyme (ACC =  0.78), trans-
porter (ACC =  0.79) and ion channels (ACC =  0.75), respectively.

Also, we have compared the performance of WES optimal model for target class prediction with 
other published models (enzymes, 664; ion channels, 204; membrane proteins, 95; nuclear receptors, 26; 
respectively.), including the nearest profile, weighted profile, bipartite Graph learning methods and the 
same criteria5. Table 2 indicates that all the methods have quite high AUC and SPE but low SEN values. 
The WES and bipartite graph model outperform the other two models (nearest profile, weighted profile). 
However, it has to be noted that, the WES model was constructed with a lager dataset exhibiting more 
molecular and pharmacological diversities, thus it is believed that WES might have more generalization 
ability for making predictions.

Comparison of WES with 1NN. In multi-objective pattern recognition, the k-Nearest Neighbors 
algorithm (k-NN) is a non-parametric and widely used method. The output depends on whether k-NN is 
used for classification by a majority vote of its neighbors, with the object being assigned to the class most 
common among its k nearest neighbors (k is a positive integer, typically small). WES has been compared 
to a one nearest neighbor (1NN) model (Fig.  2), which judges the probability of a drug targeting to a 
protein based only on the maximum similarity to the reference ligands of the target. For close analogs, 
Tanimoto coefficients (Tc) >  0.65, the fraction of true positives was comparable between 1NN and WES 
(Fig. 2). Surprisingly, by across most similarity thresholds, WES substantially outperforms 1NN. Notably, 

Figure 1. The performance of the WES model based on CDK, Dragon, and CDK-Dragon features. 
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among the correct drug-target predictions by WES, 4,319 of them show low similarity (Tc <  0.4) with the 
ligand sets of their respective targets. However, the proportion held by 1NN is zero. These results prove 
that WES is more capable of predicting drug targets for various structurally diverse chemicals.

Evaluation of ligand scaffold hopping. In order to further assess the ligand scaffold hopping (LSH) 
ability for WES model, we have compared the predicted ligands with those known ligands for the same 
targets. The results show a diversified structural scaffolds as shown in Table S2-3. This indicates that 
WES catches the relatively complete drug-binding features for a protein from the ensemble level not 
from its single ligand like 1NN method. For example, drug Hydrocortamate, which is predicted to mod-
ulate Enpp2 (Fig. 3), is only marginally similar to the known ligand sets (Tc value 0.47; Fig. 3). Clearly, 
those similar compounds are more easily identified by WES. For example, Saquinavir, closely resemble 
(Tc value 0.91; Fig. 3) to the ligand set of REN, is predicted to regulate REN (Fig. 3). The LSH analysis 

Data Method AUC Sensitivity Specificity

Enzyme

Nearest profile 0.77 0.54 1

Weighted profile 0.81 0.39 0.99

Bipartite Graph learning 0.9 0.57 1

WES 0.86 0.54 1

Ion channel

Nearest profile 0.75 0.17 1

Weighted profile 0.81 0.24 1

Bipartite Graph learning 0.85 0.27 1

WES 0.84 0.26 1

GPCR/Membrane receptors

Nearest profile 0.73 0.16 0.99

Weighted profile 0.74 0.15 0.99

Bipartite Graph learning 0.9 0.23 1

WES 0.86 0.22 1

Transcription factor

Nearest profile – – –

Weighted profile – – –

Bipartite Graph learning – – –

WES 0.86 0.27 0.99

Transporter

Nearest profile – – –

Weighted profile – – –

Bipartite Graph learning – – –

WES 0.87 0.26 0.99

Table 2.  Statistics of the prediction performance.

Figure 2. Comparsion of WES with 1NN. The ture positive rate of WES (red) and 1NN (blue) are shown 
as bars along with the similarity bins (x-axis).
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confirms the specificity of prediction for WES, which is important for drug repositioning for those 
known drugs in pharmaceutical researches.

Experimental validation. To validate the practicability of WES model, we randomly selected 
Enpp2, Faah, PTGS2, PPARG, and REN, the five inflammation-related targets, and predicted their direct 
ligand-target interactions. The 24 top-scoring (hybrid-WES) and commercially available drug-target 
interactions (Table 3) were tested by the ligand-binding assays.

Here, the ligand-target affinities are calculated by IC50 values, and the ligands were then classified as 
strong (IC50 <  1 μ M), moderate (1 μ M ≤  IC50 <  10 μ M), weak (10 μ M ≤  IC50 <  100 μ M), or non-binders 
(IC50 ≥  100 μ M) according to Regina S. Salvat et al.20. In this work, the IC50 ≤  10 μ M is defined for binders 
for building the training dataset. Clearly, this criteria is strict, as we believe that a more strict strategy will 
be helpful to reduce data noises, since which were collected from various resources. Here, both the weak 
and strong binders were counted, resulting in a prediction ACC of 71% (17/24) for the experimental 
interactions predicted by the hybrid WES.

Perhaps the most compelling results are the test of the drugs against those targets to which they were 
not previously known to bind, so called drug repositioning (Table  3). By direct binding assay, we find 
Desmopressin is a new 1 μ M antagonist of REN receptor, which was not reported previously. This is 
also consistent with the phenomenon for Treprostinil which is newly found to antagonize PPARG in a 
micromolar concentration range. Intriguingly, Esmolol is also observed to modulate PPARG, though it 
has been reported to act on ADRB121.

Discussion
The decoding of drug direct targets is of great importance in drug repositioning and discovery, but it is 
laborious and costly. Hence, a reliable computational approach for drug direct target prediction would 
be of significant values. In this study, we propose a new WES algorithm which exhibits reasonable reli-
ability in discriminating direct interactions and non-interactions with a well specificity and sensitivity 
(AUC =  0.85), internal, external and experimental test accuracies of 78%, 70% and 71%, respectively.

Attention needs to be particularly paid to two steps in construction of the WES algorithm. First, the 
bulk of features have little to do with the pharmacological properties of a ligand. In order to identify the 
pharmacology-related features, we weighted the structural features based on statistical tests and optimi-
zation analysis in a framework of ensemble. This step not only reduces dimensionality of the descriptor 
set, but also eliminate data noise.

Second, most ligands are dissimilar with each other even they target to the same protein. Thus tradi-
tional single molecule similarity-based methods may be insufficient to predict the complex drug-target 
interactions. Here, we introduced the ensemble concept to assure the model to predict a compound 
activity not because of its similarity with certain compound in the training set, but of its similarity with 
the whole feature of an ensemble. Compared with the 1NN model, which judges the probability of a drug 
targeting to a protein based only on the maximum similarity to a reference ligand, the WES algorithm 
has more generalization ability in predicting those scaffold-hopping ligands.

Figure 3. Non-intuitive (Hydrocortamate) and straightforward (Saquinavir) WES prediction, with Tc 
values to closest references. 



www.nature.com/scientificreports/

6Scientific RepoRts | 5:11970 | DOi: 10.1038/srep11970

Methods
Data sets. We obtained 822,643 protein-ligand pairs (PLPs) with information of inhibitory (Ki), IC50 
values and protein sequences from the BindingDB database, including 5,311 proteins and 490,282 lig-
ands, respectively. Ki is the concentration of an inhibitor that is required to decrease the maximal rate of 
the reaction by half. IC50 is a measure of the effectiveness of a substance in inhibiting a specific biological 
or biochemical function. To obtain a reliable data set, we filtered the PLPs with the following steps: (1) 
deleting the redundant PLPs based on the protein sequences and the ligand Inchkey; (2) removing the 
PLPs of which Ki and IC50 values are unavailable or the average value of them larger than 10 μ M; (3) 
expunging the smaller ligand-set sized protein that overlaps more than 60% ligands with another protein; 
(4) excluding those ligands whose Tanimoto similarity is larger than 0.75 in the ligand set of one protein; 
(5) deleting the proteins whose ligand number is less than 5. As a result, 1788 proteins and 68,777 ligands 
that constituted 98,327 PLPs were obtained as the positive set. The negative set was constructed by a 
random generation of the same number of relations that do not overlap with those positive interactions. 
The two datasets are then used for training the models. All the data can be download from our website 
related with this work (http://lsp.nwsuaf.edu.cn/tcmsp.php).

Construction of feature matrix. CDK Fingerprint matrix.  Ligands were represented by 1,024-bit 
chemical hashed fingerprints, which were computed using the CDK with default 2D parameters. The 
CDK is a scientific, LGPL-ed library for bio-informatics and chemi-informatics and computational 
chemistry written in Java. Taking the ligand set of a protein j constituted by nj ligands, an initial matrix 
P =  { F(j) } (nj ×  1024) was generated to represent the protein, where ( )= , , ,( )

,
( )

,
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F f f fk
j

k
j

k
j

k
j

1 2 1024
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binary fingerprint vector of ligand k. To investigate which feature fit of the fingerprint has a higher con-
tribution rate in distinguishing one protein from the others, we weighted each feature based on the 
significance (by P-value using one-sided Fisher’s exact test) of overrepresentation against the background 
incidence of the feature in respective protein. The P-values are adjusted to control for multiple hypoth-
esis tests, yielding q-values. The weight for each feature was then computed using the following formula:

NO. Target gene name Drug name
IC50 (μM): 
mean ± SD

1 Enpp2 Bleomycin 71.39 ±  3.2

2 Enpp2 Pasireotide 73.28 ±  9.7

3 Enpp2 Fingolimod 114.78 ±  5.8

4 Enpp2 Hydrocortamate 218 ±  6.4

5 Enpp2 Vancomycin 68.54 ±  7.0

6 Faah Alpha-linolenic acid 53.86 ±  11.5

7 Faah Pentagastrin 222.61 ±  8.3

8 Faah Roxatidine acetate 34.53 ±  1.5

9 Faah Alpha-linolenic acid 43.86 ±  15

10 PTGS2 Mupirocin 123.39 ±  7.4

11 PTGS2 Rimonabant 138.37 ±  3.5

12 PTGS2 Pravastatin 199.13 ±  12.3

13 PPARG Treprostinil 69.01 ±  17.5

14 PPARG Esmolol 40.77 ±  6.5

15 PPARG Propafenone 36.44 ±  13.2

16 REN Pentagastrin 3.45 ±  4.8

17 REN Cetrorelix 156.44 ±  3.7

18 REN Carfilzomib 22.01 ±  6.4

19 REN Saquinavir 69.1 ±  4.2

20 REN Lopinavir 49.35 ±  10.3

21 REN Indinavir 44.32 ±  12.1

22 REN Ritonavir 26.11 ±  13.2

23 REN Desmopressin 1 ±  2.6

24 REN Felypressin 4.5 ±  7.1

Table 3.  IC50 values for the 24 top-scored direct interactions.

http://nothacked_1017.tcmspw.com/tcmsp.php
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, N is the number of total proteins in the training set. We used q =  0.05, 

the generally considered statistically significant threshold, as it ensures a reasonable discrimination of the 
feature weights (Figure S1).

Dragon Fingerprint matrix. In addition, ligands were also represented by 1,664 Dragon descriptors 
(http://www.talete.mi.it/index.htm). As a professional software package, Dragon calculates molecular 
descriptors frequently used to evaluate the molecular structure-activity relationship. Taking the ligand 
set of a protein j constituted by nj ligands, an initial matrix P =  {D(j)} (nj ×  1664) is generated to represent 
the protein, where ( )= , , ,( )

,
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1 2 1664 . All dk,i were standardized according to the equation of 
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i
 , where μi and σi are the mean and standard deviation of ligand k, respectively. To recognize 

those features that can signally differentiate these proteins, we weighted each feature based on 
non-parametric Wilcoxon Sum Rank Test. The P-values are adjusted to control multiple hypothesis test-
ing, yielding q-values. The weight for each feature was then computed using equation (1).

Model building. Firstly, for a protein j, we selected mj1 and mj2 highest weighted features from the 
CDK and Dragon descriptors, respectively; then the protein j was represented by the feature matrices 
P =  { F(j) } (nj ×  mj1) and P =  { D(j) } (nj ×  mj2); finally, the fingerprint-Dragon based weighted similarity 
scores between two ligand (l1, l2) were expressed as
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where ∧ indicts the Boolean operator “AND”, whereas ∨ represents the Boolean operator “OR”, respec-
tively.
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In equation (3), < ·,·>  denotes the inner product, whereas |·| represents the module, respectively.
The feature (CDK and Dragon) number m of a protein ligand set was determined by the optimization 

model (equation 4).

∑ ( , ) = , , …,
( ), ∈ ( )

S l l jarg max 1 2 1788
4m s t P

s t m
j

In order to obtain a good estimate of the overall similarity with the ligand set (ensemble), we first 
defined a raw score for this ligand by summing its weighted similarity relative to the ligand set of protein 
j with Si ≥  Scut.

∑ ϕ= ( , ) ( ( , ) )
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The threshold Scut was determined by retrospective cross-fold analysis. Unlike WES, SEA chooses Scut 

to meet that the random Z score is consistent and enriches for a BLAST-like background probability dis-
tribution. Actually, by sampling across the range of Scut choices, we chose the threshold that will lead to 
the highest ROC AUC, resulting in a similarity threshold. The scores below the threshold were discarded 
which do not contribute to the overall similarity.

Then, a model of the distribution of random raw scores was developed and fitted. Random raw scores 
were calculated by comparing a randomly selected ligand set (size = 50) to the ligand set of each protein. 
Therefore, we can acquire the mean (μ) and standard deviation (σ) of the 50 random raw scores. And the 
normalized raw score, annotated as Z score, can be represented as equation (6):

=
μ

σ
−

( )Z
Raw score

score 6

http://www.talete.mi.it/index.htm
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The calculation process of Z score is as follows:

1. For a protein j, choose 50 ligands at random from all ligands and calculate the mean and stand-
ard deviation values of raw scores at different similarity thresholds (Scut) with step size 0.01, where 
0 <  Scut <  1. Store all calculated mean values (μj =  {μj1,…, μj100}) and standard deviation values 
(σj =  {σj1,…, σj100}), along with the set size of the protein j.

2. For each Scut, plot the set size of protein ligand vs all μj(Scut) and σj(Scut) scores, respectively; and 
then the linear regression was applied to determine the equations of μj and σj. Typically, equations 
yμ =  α1x +  β1 and yσ =  α2x +  β2 are appropriate for standardizing the Raw sores. Given the normal-
ized equation (6), calculate the Z score. If a new drug–target interaction has a Z score above a 
threshold, it will be treated as a direct interaction. The threshold above which the highest F1 score 
was achieved in LOOCV was used to make predictions (equation 7).

=
+ ( )

F
precision recall

precision recall
1

2* *
7

where precision is the ratio of the number of true positives to the number of predicted positives and 
recall is the ratio of the true positives which are correctly identified.

Z score integration. To depict the likelihood of a ligand binds to a specific protein, we integrated 
the Z scores into a likelihood value by the Bayesian network method, so called the hybrid model in this 
work. The likelihood was defined as:

=
( = )

( = )
=

( ) ( , )

( ) ( , ) ( )
L

P positive Z z z
P negative Z z z

P positive P z z positive
P negative P z z negative 8

1 2

1 2

1 2

1 2

where P(Z =  z1,z2|C =  c) indicates the probability of Z score scored z1 or z2 in class c, and z1 and z2 rep-
resent the CDK and Dragon Z scores, respectively.

In addition, we evaluated the conditional probability by the multivariate kernel density estimation 
approach, which is a nonparametric technique for density estimation through the following formula:

∑ ∑( = , = ) = ( − ) = ( ( − ))
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where, π( ) = ( ) (− ′ )−K X exp X X2 1
2

d
2  is the Gaussian kernel, d is the dimensionality of vector X, (d =  2); 

n is the number of data samples in class c, H is the bandwidth (or smoothing) d ×  d matrix which is 
symmetric and positive definite. And a ligand is considered to incorporate into a protein when the L 
value is greater than threshold θ, which is the same as the threshold of Z score.

Performance evaluation. The WES model was evaluated and verified with LOOCV. In details, the 
WES algorithm is applied once for each interaction, using all other interactions as a training set and 
using the selected interaction as a single-item test set. Several parameters, ACC (equation 10), SEN 
(equation 11), SPE (equation 12) and PRE (equation 13), were used to measure the accuracy of overall, 
positive prediction, negative prediction and the positive predictive value of the model, respectively.

=
+

+ + + ( )
ACC TP TN

TP FP TN FN 10

=
+ ( )

SEN TP
TP FN 11

=
+ ( )

SPE TN
TN FP 12

=
+ ( )

PRE TP
TP FP 13

here, the TP, TN, FP and FN represent the number of true-positives, true-negatives, false-positives and 
false-negatives, respectively.

Comparison to a 1NN model. We evaluated two 1NN models, using either CDK or Dragon fin-
gerprints. For a drug, it was compared to all known ligands of a target. The highest Tc value between 
the querying drug and known ligands was assigned to the drug-target pair. For each drug, we identified 
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the lowest Tc value that yielded valid WES predictions using the respective fingerprint and collected all 
drug-target pairs with Tc scores above that threshold. We calculated an adjusted hit rate (equation 14):

  =
+

+ + ( )
TP

TP FP
Adjusted hit rate 1

1 14

The additional count for both numerator and denominator distinguishes cases where no predictions 
were confirmed.

External data validation for binding and non-binding data. To examine the generalization ability of 
WES, we manually collected the direct binding data in PDB and non-binding data in BindingDB (see 
details in Results).

Experimental validation. Molelues like Bleomycin, Pasireotide, Fingolimod, Hydrocortamate, 
Vancomycin, Alpha-Linolenic Acid, Pentagastrin, Roxatidine acetate, Alpha-Linolenic Acid, Mupirocin, 
Rimonabant, Pravastatin, Treprostinil, Esmolol, Cetrorelix, Carfilzomib, Saquinavir, Lopinavir, Indinavir, 
Ritonavir, Desmopressin, and Felypressin were purchased from Yitai Technology Ltd. (Wuhan, China). 
Enpp2 (Autotaxin Inhibitor Screening Assay Kit), Faah (FAAH Inhibitor Screening Assay Kit), PTGS2 
(COX Inhibitor Screening Assay Kit), PPARG (PPARγ  Ligand Screening Assay Kit), and REN (Renin 
Inhibitor Screening Assay Kit) were purchased from Cayman Chemical, Ann Arbor, MI, USA. All drugs 
were dissolved in DMSO and freshly prepared due to the loss of activity under long-term storage. The 
activity of targets was detected according to manufacturer’s instructions. IC50 values were determined 
using the Bliss method according to the eight data points per drug. The same drug-target interaction was 
repeated independently three times to obtain a mean IC50 value and its standard deviation.
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